Binocle

Valerio Santinelli

Apr 05, 2022

CONTENTS:

Features 3
1.1 Third party libraries e 3
1.2 Coordinate SyStem i e 4
Installing 5
2.1 Installing bone e e 5
2.2 Creating, building, running, updating and upgrading a project 5
Building the library 7
3.1 macOS . . e e e 7
3.2 WINdOWS . . . o o e e e e e e e e 7
33 Android e 7
34 A0S L 8
3.5 Emscripten (Web) L e e e e e e 8
API Reference 9
Indices and tables 11

Binocle

This is the main documentation of Binocle, a C engine mainly aimed at game development.

The previous incarnation was a C++ engine with way more features than this one, but I wanted to get back to the basics
and trim everything down to a more manageable framework without all the bloat that C++ carries around.

It’s born out of the need for the following features:
* Cross-platform compilation (macOS, Windows, iOS, Android, Web)
* OpenGL ES 2 support (but you can use any variant of OpenGL as long as it’s supported by your hardware)

Nothing too fancy, but still something I always need when I make 2D or 3D games and prototypes.

Warning: The API is evolving all the time but the core is pretty stable. I keep adding and tweaking stuff based on
my needs, so things may change without notice.

CONTENTS: 1

Binocle

2 CONTENTS:

CHAPTER
ONE

FEATURES

* Cross-platform: macOS, Windows, iOS, Android, Web (Linux planned)
* OpenGL API (ES 2/3 on mobile platforms)

* 2D Sprites

* Spritesheets (TexturePacker format. LibGDX format is in the works)
* Sprite batching

* Music and sound effects

* Bezier paths that can be used for anything

* BitmapFont fonts

e 2D Camera

* 2D Collisions (boxes and circles)

* Easing functions

* Entity Component System

* Timing functions

* Viewport adapters for 2D pixel perfect images

» Experimental hot code reloading for game code

¢ Lua scripting through LuaJIT on supported platforms

1.1 Third party libraries

Binocle sits on the shoulders of giants. I tried to keep the amount of external libraries to a minimum. The current
libraries are the following:

* SDL by the almighty Ryan C. Gordon (OS abstraction)
* miniaudio (cross-platform audio support)

* zIlib

* Vorbis by the Xiph.Org Foundation

* OGG by the Xiph.Org Foundation

* FreeType

¢ Dear ImGui

Binocle

* glew (for Windows OpenGL support)
» Kazmath by Luke Benstead

* stbimage

* parson

e LuaJIT

¢ sokol_time

1.2 Coordinate system

Binocle uses a right-handed coordinate system which is the same used by OpenGL

4 Chapter 1. Features

CHAPTER
TWO

INSTALLING

The easiest way to work with Binocle is to use the CLI project manager called bone. With bone you can initialize a new
project and automate the compilation and linking scripts. It’s a quite young tool so please remember to make regular
backups of your projects.

2.1 Installing bone

You can grab bone from the GitHub repo. You can either download the binaries on the Releases page or compile it
yourself.

2.2 Creating, building, running, updating and upgrading a project

Please refer to the documentation of bone to setup your first Binocle application.

https://github.com/tanis2000/bone
https://github.com/tanis2000/bone/releases
https://github.com/tanis2000/bone/blob/master/README.md

Binocle

6 Chapter 2. Installing

CHAPTER
THREE

BUILDING THE LIBRARY

The whole Binocle toolchain is based on CMake and makes it quite easy to build for different architectures. I usually
suggest to use bone to build your project, but if you really need to compile the library by hand, here are the steps to
follow for each and every supported platform.

3.1 macOS

cd build/macosx/gen
cmake -G Xcode -D DEBUG=1 ../../..

3.2 Windows

I usually run the CMake GUI tool and select the Visual Studio generator there. That’s pretty much all that’s needed.

3.3 Android

You will need the Android SDK and NDK and the correct environment variables for this to work.

cd build/android/gen

cmake -D DEBUG=1 -D ANDROID_ABI=armeabi -D ANDROID_STL=c++_static -D ANDROID_
—PLATFORM=android-21 -D CMAKE_TOOLCHAIN_FILE=../../cmake/android.toolchain.cmake ../../.
make

cmake -D DEBUG=1 -D ANDROID_ABI=armeabi-v7a -D ANDROID_STL=c++_static -D ANDROID_
—PLATFORM=android-21 -D CMAKE_TOOLCHAIN_FILE=../../cmake/android.toolchain.cmake ../../.
make

cmake -D DEBUG=1 -D ANDROID_ABI=x86_64 -D ANDROID_STL=c++_static -D ANDROID_
—PLATFORM=android-21 -D CMAKE_TOOLCHAIN_FILE=../../cmake/android.toolchain.cmake ../../.
make

cd ../android-project

./gradlew installDebug

Binocle

3.4 iOS

You will need the latest Xcode and its command line tools.

cd build/ios/gen
cmake -G Xcode -D DEBUG=1 -D I0S=1 ../../..

3.5 Emscripten (web)

You need a recent version of Emscripten installed on your system. If you’re using macOS, just do a brew install

emscripten to set it up.

cd build/emscripten/gen

emcmake cmake ../../.. -DCMAKE_BUILD_TYPE=Release
make -3j8

cd example/src

python -m SimpleHTTPServer 8000

open http://localhost:8000/ExampleProject.html

Chapter 3. Building the library

CHAPTER
FOUR

api/app
api/atlas
api/audio
api/bezier
api/bitmapfont
api/blend
api/camera
api/collision
api/color
api/easing
api/ecs

api/fs
api/game
api/gd
api/image
api/input
api/log
api/lua
api/material
api/math
api/platform
api/render_state
api/sdl
api/shader
api/sprite
api/subtexture

api/texture

API REFERENCE

Binocle

api/timer
api/viewport_adapter
api/vpct

api/window

10 Chapter 4. API Reference

CHAPTER
FIVE

INDICES AND TABLES

* genindex
* modindex

¢ search

11

	Features
	Third party libraries
	Coordinate system

	Installing
	Installing bone
	Creating, building, running, updating and upgrading a project

	Building the library
	macOS
	Windows
	Android
	iOS
	Emscripten (web)

	API Reference
	Indices and tables

